LIVE INTERACTIVE LEARNING @ YOUR DESKTOP

ACS: ENTROPY: MIXING AND OIL SPILLS

Presented by: Jerry Bell and Pat Deibert and Bonnie Bloom

November 23, 2010
Familiar Examples of Mixing (and Unmixing)

Jerry Bell, ACS (retired)
Bonnie Bloom, Hilliard Davidson HS, OH
Pat Diebert, Sheboygan Falls HS, WI
Add a water-soluble dye to water.

Quiz: After a long time, what will we observe in the beaker?

A. The dye will coalesce and look similar to the second image above.
B. The dye will spread uniformly throughout the solution.
C. The dye will separate and float on the water.
Entropy: Mixing and Oil Spills

Add a water-soluble dye to water.

Quiz: After a long time, what will we observe in the beaker?

A. The dye will coalesce and look similar to the second image above.
B. The dye will spread uniformly throughout the solution.
C. The dye will separate and float on the water.
This was the expected result. Your experience tells you that mixing is a spontaneous process that takes place in one direction, that is, *unmixing of homogeneous mixtures never occurs spontaneously*.

Whatever model we develop to explain mixing, must be consistent with and predict this observation from experience.
Entropy: Mixing and Oil Spills

Activity 1: Use your water, oil, and capped bottle.
Entropy: Mixing and Oil Spills

Activity 1: Use your water, oil, and capped bottle. Add the water and oil to the bottle, cap it, and shake, just as Pat does with vinegar and oil in this video. Observe and record what happens to your mixture.
Activity 1: Use your water, oil, and capped bottle. Add the water and oil to the bottle, cap it, and shake, just as Pat does with vinegar and oil in this video. Observe and record what happens to your mixture.

A. My mixture separates with the oil on top and water on the bottom.

B. My mixture remains mixed after shaking.
Activity 1: Use your water, oil, and capped bottle. Add the water and oil to the bottle, cap it, and shake, just as Pat does with vinegar and oil in this video. Observe and record what happens to your mixture.

A. My mixture separates with the oil on top and water on the bottom.

B. My mixture remains mixed after shaking.

Evidently, oil and water separate and do not form a homogeneous mixture. Your experience tells you that this separation is a spontaneous process. Whatever model we develop to explain mixing, must also be consistent with and predict this unmixing observation from experience.
Entropy: Mixing and Oil Spills

Let’s pause for Questions?
Entropy: Mixing and Oil Spills

The Direction of Change
If a system can exist in more than one observable state (mixed or unmixed, for example), spontaneous changes will be in the direction toward the state that is most probable.
If a system can exist in more than one observable state (mixed or unmixed, for example), spontaneous changes will be in the direction toward the state that is most probable.

The number of distinguishable arrangements, \(W \), of the molecules (and energy) that give a particular state of a system is a measure of the probability that this state will be observed.
If a system can exist in more than one observable state (mixed or unmixed, for example), spontaneous changes will be in the direction toward the state that is most probable.

The number of distinguishable arrangements, W, of the molecules (and energy) that give a particular state of a system is a measure of the probability that this state will be observed.

Fundamental assumption: Each distinguishably different molecular arrangement of a system is equally probable.
If a system can exist in more than one observable state (mixed or unmixed, for example), spontaneous changes will be in the direction toward the state that is most probable.

The number of distinguishable arrangements, W, of the molecules (and energy) that give a particular state of a system is a measure of the probability that this state will be observed.

Fundamental assumption: Each distinguishably different molecular arrangement of a system is equally probable.

How do you tell whether two arrangements are distinguishable?
Entropy: Mixing and Oil Spills

Two arrangements are distinguishable if you can tell them apart.
Entropy: Mixing and Oil Spills

Two arrangements are distinguishable if you can tell them apart.
Two arrangements are distinguishable if you can tell them apart.

Exchanging identical objects does not produce a new arrangement.
Two arrangements are distinguishable if you can tell them apart.

Exchanging identical objects does not produce a new arrangement.
What is the number of distinguishable arrangements, \(W \), of two identical objects in four boxes where each box can hold only one object? One arrangement is shown below.

Quiz: In the empty two-by-two grid of boxes, stamp two where you could place the objects to form an arrangement that is distinguishable from the one shown.
What is the number of distinguishable arrangements, \(W \), of two identical objects in four boxes where each box can hold only one object?

\[W = 6. \] The six distinguishable arrangements are:
Let’s pause for Questions?
Entropy: Mixing and Oil Spills

A Molecular Mixing Model
Entropy: Mixing and Oil Spills

Mixing model: Three dye molecules and 12 water molecules in a 15-cell (3 × 5) container. Initially
Entropy: Mixing and Oil Spills

Mixing model: Three dye molecules and 12 water molecules in a 15-cell (3 × 5) container. Initially

Number, W_{dye}, of distinguishable arrangements of dye molecules?
Entropy: Mixing and Oil Spills

Mixing model: Three dye molecules and 12 water molecules in a 15-cell (3 × 5) container. Initially

Number, \(W_{\text{dye}} \), of distinguishable arrangements of dye molecules?

\[W_{\text{dye}} = 1 \]
Mixing model: Three dye molecules and 12 water molecules in a 15-cell (3 × 5) container. Initially

Number, W_{dye}, of distinguishable arrangements of dye molecules?

$W_{\text{dye}} = 1$

Number, W_{water}, of distinguishable arrangements of water molecules?
Entropy: Mixing and Oil Spills

Mixing model: Three dye molecules and 12 water molecules in a 15-cell (3 × 5) container. Initially

Number, \(W_{\text{dye}} \), of distinguishable arrangements of dye molecules?
\[W_{\text{dye}} = 1 \]

Number, \(W_{\text{water}} \), of distinguishable arrangements of water molecules?
\[W_{\text{water}} = 1 \]
Entropy: Mixing and Oil Spills

Mixing model: Three dye molecules and 12 water molecules in a 15-cell (3 × 5) container. Initially

Number, \(W_{\text{dye}} \), of distinguishable arrangements of dye molecules?

\[
W_{\text{dye}} = 1
\]

Number, \(W_{\text{water}} \), of distinguishable arrangements of water molecules?

\[
W_{\text{water}} = 1
\]

\[
W_{\text{total}} = W_{\text{dye}} \cdot W_{\text{water}} = 1 \cdot 1 = 1
\]
Now allow the dye molecules to begin to mix into the water, so they can occupy any of the cells in the top two layers, that is three identical molecules and six possible cells. One possible arrangement is

What are W_{dye}, W_{water}, and W_{total} for this system?
Now allow the dye molecules to begin to mix into the water, so they can occupy any of the cells in the top two layers, that is three identical molecules and six possible cells. One possible arrangement is

What are W_{dye}, W_{water}, and W_{total} for this system?

For a system of n identical objects (dye molecules) allowed to occupy any of N boxes (cells), one object per box, the number of distinguishable arrangements, $W_{n,N}$ is given by

$$W_{n,N} = \frac{N!}{n!(N-n)!}.$$
Now allow the dye molecules to begin to mix into the water, so they can occupy any of the cells in the top two layers, that is three identical molecules and six possible cells. One possible arrangement is

What are W_{dye}, W_{water}, and W_{total} for this system?

For a system of n identical objects (dye molecules) allowed to occupy any of N boxes (cells), one object per box, the number of distinguishable arrangements, $W_{n,N}$ is given by

$$W_{n,N} = \frac{N!}{n!(N-n)!}$$

$$W_{dye} = W_{3,6} = \frac{6!}{3!(6-3)!}$$
Now allow the dye molecules to begin to mix into the water, so they can occupy any of the cells in the top two layers, that is three identical molecules and six possible cells. One possible arrangement is

What are W_{dye}, W_{water}, and W_{total} for this system?

For a system of n identical objects (dye molecules) allowed to occupy any of N boxes (cells), one object per box, the number of distinguishable arrangements, $W_{n,N}$ is given by

$$W_{n,N} = \frac{N!}{n!(N-n)!}$$

$$W_{\text{dye}} = W_{3,6} = \frac{6!}{3!(6-3)!} = \frac{6 \cdot 5 \cdot 4 \cdot (3!)}{(3 \cdot 2 \cdot 1) \cdot (3!)} = \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} = \frac{120}{6} = 20$$
Now allow the dye molecules to begin to mix into the water, so they can occupy any of the cells in the top two layers, that is three identical molecules and six possible cells. One possible arrangement is

What are W_{dye}, W_{water}, and W_{total} for this system?

For a system of n identical objects (dye molecules) allowed to occupy any of N boxes (cells), one object per box, the number of distinguishable arrangements, $W_{n,N}$ is given by

$$ W_{n,N} = \frac{N!}{n!(N-n)!} $$

$$ W_{\text{dye}} = W_{3,6} = \frac{6!}{3!(6-3)!} = \frac{6 \cdot 5 \cdot 4 \cdot (3!)}{(3 \cdot 2 \cdot 1) \cdot (3!)} = \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} = \frac{1 \cdot 5 \cdot 4}{1} = 5 \cdot 4 = 20 $$

$W_{\text{water}} = 1$ (only one choice for waters, once dye locations chosen)

$W_{\text{total}} = W_{\text{dye}} \cdot W_{\text{water}} = 20 \cdot 1 = 20$
Entropy: Mixing and Oil Spills

Continuing the mixing successively into 9, 12, and all 15 cells gives
Entropy: Mixing and Oil Spills

Continuing the mixing successively into 9, 12, and all 15 cells gives

Quiz:
As a check on what we have done, look at the system from the point of view of the water molecules. Use the formula you have to calculate $W_{12,15}$, that is, the number of ways of arranging 12 objects (water molecules) in 15 cells. Enter your result.

A. $W_{12,15} < 455$ B. $W_{12,15} = 455$ C. $W_{12,15} > 455$
Entropy: Mixing and Oil Spills

Continuing the mixing successively into 9, 12, and all 15 cells gives

Quiz:
As a check on what we have done, look at the system from the point of view of the water molecules.
Use the formula you have to calculate $W_{12,15}$, that is, the number of ways of arranging 12 objects (water molecules) in 15 cells. Enter your result.

A. $W_{12,15} < 455$
B. $W_{12,15} = 455$
C. $W_{12,15} > 455$

The calculation and result are

$$W_{12,15} = \frac{15!}{12!(15-12)!} = \frac{15 \cdot 14 \cdot 13 \cdot (12!)}{12!(3 \cdot 2 \cdot 1)} = \frac{15 \cdot 14 \cdot 13}{(3 \cdot 2 \cdot 1)} = \frac{5 \cdot 7 \cdot 13}{1} = 455 = W_{\text{water}}$$

$$W_{\text{total}} = W_{\text{dye}} \cdot W_{\text{water}} = 1 \cdot 455 = 455$$
Entropy: Mixing and Oil Spills

Continuing the mixing successively into 9, 12, and all 15 cells gives

If a system can exist in more than one observable state spontaneous changes will be in the direction toward the state that is most probable. Our model shows what you know:

mixing is a spontaneous process
Let’s pause for Questions?
Entropy: Mixing and Oil Spills

Probability and Entropy
Entropy: Mixing and Oil Spills

ENTROPY (S)

Definition (molecular viewpoint) \(S \equiv k \cdot \ln W \)

\(k \) is Boltzmann’s constant
Entropy: Mixing and Oil Spills

ENTROPY (S)

Definition (molecular viewpoint) \(S \equiv k \cdot \ln W \)

\(k \) is Boltzmann’s constant

Note that the combination of numbers of arrangements, \(W_s \), is multiplicative, as demanded by the rules of combinations and permutations.

However, we want thermodynamic functions to be additive and the logarithmic dependence of \(S \) on \(W \), makes entropies for different parts of a system additive. For example:

\[
S_{\text{total}} = k \cdot \ln W_{\text{total}} = k \cdot \ln(W_{\text{dye}} \cdot W_{\text{water}}) = k \cdot \ln W_{\text{dye}} + k \cdot \ln W_{\text{water}} = S_{\text{dye}} + S_{\text{water}}
\]
Entropy: Mixing and Oil Spills

ENTROPY (S)

Definition (molecular viewpoint) \[S \equiv k \cdot \ln W \]
\[k \] is Boltzmann’s constant

Consider a change for which the total number of arrangements increases, that is \[W_{\text{final}} > W_{\text{initial}} \], a spontaneous change.

For this change:

\[\Delta S_{\text{total}} = k \cdot \ln W_{\text{final}} - k \cdot \ln W_{\text{initial}} = k \cdot \ln \left(\frac{W_{\text{final}}}{W_{\text{water}}} \right) > 0 \]
Entropy: Mixing and Oil Spills

ENTROPY (S)

Definition (molecular viewpoint) \(S \equiv k \cdot \ln W \)

\(k \) is Boltzmann’s constant

Consider a change for which the total number of arrangements increases, that is \(W_{\text{final}} > W_{\text{initial}} \), a spontaneous change.

For this change:

\[\Delta S_{\text{total}} = k \cdot \ln W_{\text{final}} - k \cdot \ln W_{\text{initial}} = k \cdot \ln \left[\frac{W_{\text{final}}}{W_{\text{water}}} \right] > 0 \]

Entropy increases in spontaneous changes
Note that another, more fundamental, way to view the increasing entropy as mixing occurs in our model is that the volume available for the molecules (dye or water) to mix into is increasing. Thus, the larger the volume a system of molecules can occupy, the higher the entropy.
Entropy: Mixing and Oil Spills

Let’s pause for Questions?
Entropy: Mixing and Oil Spills

Entropy, Oil, and Water
Why don’t oil and water mix? Water molecules surround non-polar solutes and are “frozen out” (dark blue) of the rest of the liquid, thus reducing the effective volume available to the solvent molecules.

“Free” water = 39 – 12 = 27
“Free” water = 39 – 7 = 32

$S_{mix} < S_{unmix}$
Entropy: Mixing and Oil Spills

Why don’t oil and water mix? Spontaneous process is unmixing. Oil spills float on the surface--as you observed previously.
Entropy: Mixing and Oil Spills

One way to ameliorate an oil spill is to add “dispersants,” which are detergents, ambiphilic molecules with polar and nonpolar ends.
Entropy: Mixing and Oil Spills

One way to ameliorate an oil spill is to add “dispersants,” which are detergents, ambiphilic molecules with polar and nonpolar ends.
Entropy: Mixing and Oil Spills

One way to ameliorate an oil spill is to add “dispersants,” which are detergents, ambiphilic molecules with polar and nonpolar ends.

entropy increases

micelle formation
Entropy: Mixing and Oil Spills

One way to ameliorate an oil spill is to add “dispersants,” which are detergents, ambiphilic molecules with polar and nonpolar ends.
Activity 2: Add detergent to your oil and water mixture, cap the bottle, and shake well. Also watch as Pat adds an egg yolk to her vinegar and oil dressing. Observe and record what happens to your mixture.
Entropy: Mixing and Oil Spills

Activity 2: Add detergent to your oil and water mixture, cap the bottle, and shake well. Also watch as Pat adds an egg yolk to her vinegar and oil dressing. Observe and record what happens to your mixture.

A. My mixture separates with the oil on top and water on the bottom.

B. My mixture remains mixed after shaking.
Activity 2: Add detergent to your oil and water mixture, cap the bottle, and shake well. Also watch as Pat adds an egg yolk to her vinegar and oil dressing. Observe and record what happens to your mixture.

A. My mixture separates with the oil on top and water on the bottom.

B. My mixture remains mixed after shaking.

The phospholipids and proteins in an egg yolk are ambiphilic molecules that act like your detergent molecules to disperse the oil in the vinegar to form a stable emulsion. With the appropriate recipe, this is how we make mayonnaise.
Different conditions may yield different results. High pressure of small non-polar molecules and low temperature to encourage formation of a solid water phase can produce this change.

\[S_{\text{unmix}} < S_{\text{mix}} \]

Little freedom of movement

Solutes mix into many cells
Entropy: Mixing and Oil Spills

Mixing, formation of clathrates, gas hydrates -- non-polar molecules in the relatively open structure of some forms of ice, is spontaneous. As methane at high pressure seeps out of fissures into cold water at the bottom of the sea (Gulf of Mexico, for example), clathrate formation is rapid.

So rapid, that the gushing methane gas from the Gulf oil spill formed the clathrate immediately and clogged a container designed to trap the oil.
Note that temperature is a factor in the formation of clathrates, but we have not yet connected entropy and temperature. That is our task in the next ACS-NSTA web seminar.

December 15, 2010

Entropy, Energy, and Temperature
Thank you to the sponsor of tonight's Web Seminar:
Welcome to Your Professional Development Web Space!

With these resources you can build your professional development plan, track your activities and assess your progress. You can start at “Explore Learning Opportunities” below or by creating your game plan with the PD Plan and Portfolio tool. You may also review an archived Web Seminar or a multimedia overview of the Learning Center.

NEW: Earn as you learn! Collect points and badges as you aggregate, comment, and complete PD! Create collections with your own resources and share with others!

Explore Learning Opportunities
- Advanced Search

By Subject
- Earth & Space Science
- Life Science
- Physical Science

By Grade Level
- Elementary
- Middle School
- High School

By State Standards
- Select your state to begin:
 - Choose a state
http://www.elluminate.com
National Science Teachers Association
Dr. Francis Q. Eberle, Executive Director
Zipporah Miller, Associate Executive Director
Conferences and Programs
Al Byers, Assistant Executive Director e-Learning

NSTA Web Seminars
Paul Tingler, Director
Jeff Layman, Technical Coordinator

LIVE INTERACTIVE LEARNING @ YOUR DESKTOP