NSTA Press: Stop Faking It! Energy

Work, Energy, and Simple Machines

Dr. Bill Robertson

Tuesday, May 5, 2009
NSTA Web Seminar
Energy: Stop Faking It!

Bill Robertson
May 5, 2009
Work, Energy, and Simple Machines
Which of the following describe what happens with the ruler?

<table>
<thead>
<tr>
<th>The harder it is to move the rock, the less your end of the ruler moves</th>
<th>The easier it is to move the rock, the less your end of the ruler moves</th>
<th>No matter how much your end of the ruler moves, the amount of force you have to apply doesn’t change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let’s Pause Two Minutes for Questions?
Work
Work = (net force) (distance object moves in the direction of the force)
Is this person doing work on the trash bag?

YES NO
Work done on a system adds energy to the system.

Work done by a system subtracts energy from the system.
Before You Begin

Efficiency and Entropy A is a simulation that allows you to change the position of a pencil acting as the fulcrum of a lever. For each position of the pencil, the energy input and output will be revealed on the screen. What do you notice about these numbers?

Use the instructions tab to reveal the specific instructions to operate this interactive simulation.
Pencil Position
Before You Begin

Efficiency and Entropy B is a simulation that shows you situations with three different types (sizes) of gears. As you observe the gears in motion, the energy input and output for each situation will be revealed on the screen. What do you notice about these numbers?

Use the instructions tab to reveal the specific instructions to operate this simulation.
As long as we account for the work in, is our ruler system a closed system (no energy in or out)?

<table>
<thead>
<tr>
<th>Answer 1</th>
<th>Answer 2</th>
<th>Answer 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, because conservation of energy depends on having a closed system</td>
<td>No, there is no such thing as a closed system</td>
<td>Almost. There are always losses due to thermal energy, but those losses could be relatively small.</td>
</tr>
</tbody>
</table>
If we believe in conservation of energy, then the work you do on a system shows up as energy of the components or work done by the system.
Let’s Pause Two Minutes for Questions?
Work done on ruler

becomes

gravitational potential energy of rock

becomes

kinetic energy of ruler

becomes

thermal energy
If we ignore heat losses due to friction, then we can say that

Work done on the system = work done by the system

or

Work in = Work out
$F_1 d_1 = F_2 d_2$
Since d_1 is larger than d_2, what do we know about the forces?
\[F_1 = F_2 \]

\[F_1 > F_2 \]

\[F_1 < F_2 \]
F_1 \cdot d_1 = F_2 \cdot d_2
d_1 is now smaller than d_2

How do F_1 and F_2 compare?
\[F_1 = F_2 \]

\[F_1 > F_2 \]

\[F_1 < F_2 \]
F_1 \cdot d_1 = F_2 \cdot d_2
With simple machines, there is almost always a tradeoff between force and distance.
True or False? The $F_1 d_1 = F_2 d_2$ we just used is the same as the "law of the lever."

<table>
<thead>
<tr>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
You push down on a lever, moving your end four times as far as the end with the rock moves. How does the force exerted on the rock compare to the force you exert?

<table>
<thead>
<tr>
<th>They’re the same.</th>
<th>The force you exert is four times the force exerted on the rock.</th>
<th>The force you exert is one fourth the force exerted on the rock.</th>
</tr>
</thead>
</table>
Let’s Pause Two Minutes for Questions?
Pulleys
How does your pull in the previous slide compare to the force exerted on the washer?

<table>
<thead>
<tr>
<th>The same</th>
<th>Twice as large</th>
<th>Half as large</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The force you exert is the same as the force exerted on the weight.
Sometimes all a simple machine does is change the direction of the force you exert.
How does your pull in the previous slide compare to the force exerted on the washer?

<table>
<thead>
<tr>
<th>The same</th>
<th>Twice as large</th>
<th>Half as large</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Small input force

Large output force

"Not now, Marge! Just tell me when the tire is off the ground."
Your kinetic energy is getting weak. You can't resist my magnetism.
NSTA SciGuides:

Provide tools to quickly and easily locate targeted science content information and teaching resources from NSTA-reviewed science web sites.

Welcome to Your Professional Development

The Learning Center is NSTA's e-professional development portal to help you address your classroom needs and busy schedule. You can gain access to more than 3,300 different resources that cater to your preference for learning. Over 925 resources, such as journal articles, science objects and web seminars are available for free. A suite of practical tools such as My Library, My Transcript, and My Professional Development Plan and Portfolio tool help you organize, personalize, and document your growth over time. You may review an archived Web Seminar overview of the NSTA Learning Center, or download the "How to Guide" PDF (2.7 MB).

Explore Learning Opportunities

- By Subject
 - Earth & Space Science
 - Life Science
 - Physical Science

- By Grade Level
 - Elementary
 - Middle School
 - High School
 - College

- Select your state to begin: Choose a state

Do-It-Yourself Learning

Learn at your own pace online with these 1-2 or 6-10 hour interactive activities.

Live Online Seminars & Classes

Learn online from certified instructors with your colleagues. 1-2 hour seminars, week and month long courses are available. Enter state.

Multimedia Overview

View Overview of the NSTA Learning Center

Free Learning Resources

Solar System: A Look at the

http://learningcenter.nsta.org
National Science Teachers Association
Dr. Francis Q. Eberle, Executive Director
Zipporah Miller, Associate Executive Director
Conferences and Programs
Al Byers, Assistant Executive Director e-Learning

NSTA Web Seminars
Paul Tingler, Director
Jeff Layman, Technical Coordinator

NSTA WEB SEMINARS
LIVE INTERACTIVE LEARNING @ YOUR DESKTOP